The Security of ChaCha20-Poly1305 in the Multi-User Setting

TECHNISCHE UNIVERSITÄT DARMSTADT

Jean Paul Degabriele

Jérôme Govinden

Felix Günther

Kenneth G. Paterson

ACM CCS 2021

Outline

2 Background

- 3 The Construction of ChaCha20-Poly1305
- 4 Security Analysis of ChaCha20-Poly1305
- 5 Interpretation of the Bounds

Motivation

ChaCha20-Poly1305 Usage in Protocols

- ChaCha20-Poly1305 and AES-GCM (Galois Counter Mode) are the most popular AEAD schemes
- ChaCha20-Poly1305 is the default AEAD scheme in OpenSSH, WireGuard, OTRv4, and the Bitcoin Lightning Network
- ChaCha20-Poly1305 is recommended (after GCM) in TLS, DTLS and QUIC

 \rightarrow There is no correct security proof for ChaCha20-Poly1305 \rightarrow We rectify the situation and obtain some surprising results

Background

Nonce-Based AEAD (Authenticated Encryption with Associated Data) Scheme Syntax

Nonce-Based AEAD Security

Nonce-Randomized AEAD

- Used in widely deployed protocols such as TLS and QUIC
- Technique introduced in TLS 1.3 specification, intuitively, to mitigate multi-users attacks
- Formal justification obtained only later in [BT16; HTT18]

ChaCha20-Poly1305 Previous Security Analyses

- ChaCha20 and Poly1305 were designed separately and independently by Bernstein
- They were combined into an AEAD scheme by Langley without security proof
- The only dedicated security analysis is in an unpublished note by Procter on IACR ePrint

Security analyses focuses mostly on AES-GCM:

	AES-GCM	ChaCha20-Poly1305
Single-User:	[McGrew and Viega, INDOCRYPT 2004]	
	[Iwata, Ohashi, and Minematsu, CRYPTO 2012]	[Procter, IACR ePrint 2014]
	[Niwa et al., <i>FSE 2015</i>]	The proof is incorrect
Multi-User:	[Bellare and Tackmann, CRYPTO 2016, Part I]	Procter's Bound
	[Luykx, Mennink, and Paterson, ASIACRYPT 2017, Part II]	+
	[Hoang, Tessaro, and Thiruvengadam, ACM CCS 2018]	Hybrid Argument

The Construction of ChaCha20-Poly1305

The ChaCha20-Poly1305 AEAD Scheme

The ChaCha20-Poly1305 AEAD Scheme

The ChaCha20-Poly1305 AEAD Scheme

AES-GCM Associated Data Kev padded Nonce Plaintext Associated Data Key Plaintext Nonce ΔD pad(N) М AD N 0 Counter=0 Counter=0 Counter=1 Counter=ℓ Counter=0 Counter=1 Counter=ℓ CC_block CC_block CC_block Keystream 256 bits Keystream -----CTR Mode Encryption Poly1305 Key Gen ChaCha20 One-time key s One-time key (r, s) Hash key r GHASH Polv1305 Mac $H_r(AD, C) \oplus s$ $H_{r}(AD, C) + s$ Authentication tag T Ciphertext C Authentication tag T Ciphertext C

ChaCha20-Poly1305

In the Construction (One-time Hash Key)

ChaCha20-Poly1305

In the Blocks Generation

In the Blocks Generation

Block cipher in AES-GCM

Block size: 128 bits

AES

ChaCha20 block function

Block size: 512 bits

ARX construction

Security Analysis of ChaCha20-Poly1305

Previous Security Analysis In the Single-User Setting

Single-User Setting

$Adversary \mathcal{A} \qquad M \qquad Enc \\ N, AD, M \\ C \\ N, AD, C \\ M \\ DEC \\ DEC \\ M \\ DEC \\$

Procter's Bound

$$\mathsf{Adv}^{\mathsf{AE}}_{\mathsf{ChaCha20-Poly1305}}(\mathcal{A}) \leq \mathsf{Adv}^{\mathsf{PRF}}_{\mathsf{CC_block}}(\mathcal{A}_{\mathsf{prf}}) + \frac{3 \cdot q_{\mathsf{v}} \cdot \ell_{\mathsf{m}}}{2^{104}}$$

- In the Single-User Setting → does not consider multi-user attacks
- In the Standard Model: CC_block is assumed to be a PRF → does not explicitly quantify local computations advantage
- The original proof is incorrect

ightarrow We provide a new proof under the same assumption and recover the same security bound

The Relevance of Multi-User Security

It better captures real world threats such as state-actors that

- Are able to eavesdrop and collect en masse the data of multiple users over the internet traffic,
- B Have large computational resources, which they can use for precomputation.

It is the preferred setting for choosing the parameters of many protocols:

- It is used to **determine rekeying frequencies** for AEAD in TLS, DTLS, and QUIC.
- For protocols such as DTLS and QUIC, operating over UDP, it is used to determine the number of failed decryption queries allowed before terminating the session.

 \rightarrow There is no Multi-User Security analysis for ChaCha20-Poly1305 available to practitioners.

The Multi-User Security Model

Modelling the Underlying Primitive

Ideal Cipher vs Ideal Permutation Model

Block cipher in AES-GCM

- For each key K, E_K is a different permutation
- No output collision for a single key K
- [BT16; HTT18] $\rightarrow E$ is an **ideal cipher**

ChaCha20 block function

$$\operatorname{const} || K || \operatorname{ctr} || N \longrightarrow \pi \longrightarrow$$

- Uses only one permutation π
- Not indifferentiable from a random function
- In our proof $\rightarrow \pi$ is an **ideal permutation**

Proof Overview

- The proof is based on the H-coefficient technique
- It follows a similar structure as [HTT18] but with some noticeable differences:
 - It is done in a different model (i.e., ideal permutation model)

 - Some terms, corresponding to Bad transcripts, are bounded differently and improved

Multi-User Security Bound

• The bound is tight \rightarrow we give matching attacks for each term

Multi-User Security Bound

$$\mathsf{Adv}_{\mathsf{ChaCha20-Poly1305}[\pi]}^{\mathsf{muAE}}(\mathcal{A}) \leq \frac{3 \cdot q_{\mathsf{v}}(\ell_{\mathsf{m}}+1)}{2^{104}} + \frac{\mathsf{p} \cdot (\mathsf{d}+512)}{2^{256}} + \frac{\mathsf{d} \cdot q_{\mathsf{e}}+8}{2^{256}} + \frac{1536 \cdot q_{\mathsf{v}}}{2^{256}} + \frac{(\sigma_{\mathsf{e}}+q_{\mathsf{e}})^2}{2^{513}}$$

- \blacksquare The bound is tight \rightarrow we give matching attacks for each term
- This bound can be used to tune the parameters of protocols using ChaCha20-Poly1305
- d : max number of times a same nonce is reused across different users during encryption (⇒ A is called a d-repeating adversary)
 - \rightarrow for non nonce-randomized schemes, $d = q_e$
 - ightarrow for nonce-randomized schemes, $\textit{d} \ll q_e$ is bounded through a probabilistic balls-into-bins argument

Biased Balls-Into-Bins Previous Results

- Maximum load results for a slightly biased ball distribution B are given in [BHT18]
 - \rightarrow reused in [HTT18]:
 - Description To improve over the bounds in [BT16] for nonce-randomization
 - Extends security bounds of a classical AEAD scheme for *d*-repeating adversaries to its nonce-randomized version
 - Introduces a limiting term of 2⁻⁴⁸ in the bound

Biased Balls-Into-Bins

Q balls Q balls ↓ probability B bins:

- We improve over [BHT18], by allowing any biased ball distribution B and number of balls Q, in addition to a tradeoff parameter between the maximum load and its probability
 - \rightarrow We improve the prior bound for nonce-randomization:
 - **n** Replacing 2^{-48} with 2^{-192} in the bound for $d \le 287$
 - Improving the bound also for nonce-randomized AES-GCM
 - In practice, more queries are allowed in protocols

Interpretation of the Bounds

Security Properties of ChaCha20-Poly1305

- The security profile of ChaCha20-Poly1305 is very different from AES-GCM:
 - Dominant term for AES256-GCM:

 $rac{\sigma \cdot {\pmb B}}{2^{128}}
ightarrow$ corresponds to AES (the encryption component)

Dominant term for ChaCha20-Poly1305:

 $rac{q_v \cdot \ell_m}{2^{104}}
ightarrow$ corresponds to Poly1305 (the MAC component)

- \rightarrow protocols need to tune their parameter limits differently
- Rekeying does not improve the multi-user security of ChaCha20-Poly1305.

Summary

- We gave a new security analysis of ChaCha20-Poly1305:
 - in the Single-User setting: we gave a new proof of Procter's bound,
 - in the Multi-User setting: we gave a detailed analysis on par with that for AES-GCM.
- We described attacks to prove the tightness of every term in our multi-user security bound.
- We improved in the process the bound for nonce-randomized AES-GCM.
- We highlighted that the security limits of ChaCha20-Poly1305 are different from AES-GCM.
- We provide a simple way to strengthen the scheme by increasing the hash size.

Full version available soon on IACR ePrint

References I

- [BHT18] Priyanka Bose, Viet Tung Hoang, and Stefano Tessaro. "Revisiting AES-GCM-SIV: Multi-user Security, Faster Key Derivation, and Better Bounds". In: *EUROCRYPT 2018, Part I*. Ed. by Jesper Buus Nielsen and Vincent Rijmen. Vol. 10820. LNCS. Springer, Heidelberg, Apr. 2018, pp. 468–499. DOI: 10.1007/978-3-319-78381-9_18.
- [BT16] Mihir Bellare and Björn Tackmann. "The Multi-user Security of Authenticated Encryption: AES-GCM in TLS 1.3". In: CRYPTO 2016, Part I. Ed. by Matthew Robshaw and Jonathan Katz. Vol. 9814. LNCS. Springer, Heidelberg, Aug. 2016, pp. 247–276. DOI: 10.1007/978-3-662-53018-4_10.
- [HTT18] Viet Tung Hoang, Stefano Tessaro, and Aishwarya Thiruvengadam. "The Multi-user Security of GCM, Revisited: Tight Bounds for Nonce Randomization". In: ACM CCS 2018. Ed. by David Lie et al. ACM Press, Oct. 2018, pp. 1429–1440. DOI: 10.1145/3243734.3243816.

References II

- [IOM12] Tetsu Iwata, Keisuke Ohashi, and Kazuhiko Minematsu. "Breaking and Repairing GCM Security Proofs". In: CRYPTO 2012. Ed. by Reihaneh Safavi-Naini and Ran Canetti. Vol. 7417. LNCS. Springer, Heidelberg, Aug. 2012, pp. 31–49. DOI: 10.1007/978-3-642-32009-5_3.
- [Jea16] Jérémy Jean. TikZ for Cryptographers. https://www.iacr.org/authors/tikz/. 2016.
- [LMP17] Atul Luykx, Bart Mennink, and Kenneth G. Paterson. "Analyzing Multi-key Security Degradation". In: ASIACRYPT 2017, Part II. Ed. by Tsuyoshi Takagi and Thomas Peyrin. Vol. 10625. LNCS. Springer, Heidelberg, Dec. 2017, pp. 575–605. DOI: 10.1007/978-3-319-70697-9_20.

References III

- [MV04] David A. McGrew and John Viega. "The Security and Performance of the Galois/Counter Mode (GCM) of Operation". In: INDOCRYPT 2004. Ed. by Anne Canteaut and Kapalee Viswanathan. Vol. 3348. LNCS. Springer, Heidelberg, Dec. 2004, pp. 343–355.
- [Niw+15] Yuichi Niwa et al. "GCM Security Bounds Reconsidered". In: FSE 2015. Ed. by Gregor Leander. Vol. 9054. LNCS. Springer, Heidelberg, Mar. 2015, pp. 385–407. DOI: 10.1007/978-3-662-48116-5_19.
- [Pro14] Gordon Procter. A Security Analysis of the Composition of ChaCha20 and Poly1305. Cryptology ePrint Archive, Report 2014/613. https://eprint.iacr.org/2014/613.2014.

Increasing the Hash Size ChaCha20-cPoly1305

Proof Overview H-Coefficient technique

For any **good transcript** τ it holds that:

$$rac{\mathsf{P}_{ ext{real}}(au)}{\mathsf{P}_{ ext{ideal}}(au)} \geq 1 - rac{2q_{ ext{v}}}{2^t}.$$

For bad transcripts:

$$\begin{aligned} & \Pr[\mathcal{T}_{\text{ideal}} \in \text{Bad}_{1}] \leq \frac{pd}{2^{k}}. \\ & \Pr[\mathcal{T}_{\text{ideal}} \in \text{Bad}_{2}] \leq \frac{p \cdot 2\overline{(n-k)}^{\sigma_{e}}}{2^{k}} + \frac{1}{2^{n-k}}. \\ & \Pr[\mathcal{T}_{\text{ideal}} \in \text{Bad}_{2}] \leq \frac{p \cdot 2\overline{(n-k)}^{\sigma_{e}}}{2^{k}} + \frac{1}{2^{n-k}}. \\ & \Pr[\mathcal{T}_{\text{ideal}} \in \text{Bad}_{3}] \leq \frac{q_{e}(d-1)}{2^{k}}. \\ & \Pr[\mathcal{T}_{\text{ideal}} \in \text{Bad}_{3}] \leq \frac{q_{e}(d-1)}{2^{k}}. \\ & \Pr[\mathcal{T}_{\text{ideal}} \in \text{Bad}_{6}] \leq \frac{q_{v}}{2^{t}} + \frac{q_{v} \cdot 2 \cdot \overline{2t}^{d}}{2^{k}} + \frac{1}{2^{2t}}. \end{aligned}$$