
SoK: Efficient Design and Implementation of

Polynomial Hash Functions over Prime Fields

Jean Paul Degabriele1, Jan Gilcher2, Jérôme Govinden3 & Kenneth G. Paterson2

1 Technology Innovation Institute Cryptography Research Center, Abu Dhabi, United Arab Emirates
2 Applied Cryptography Group, ETH Zurich, Switzerland
3 CNS, Technische Universität Darmstadt, Germany

Abstract
Poly1305 is a widely-deployed polynomial hash function. The rationale behind its design was laid out in a series of papers by Bernstein, the last of which dates back to
2005. As computer architectures evolved, some of its design features became less relevant, but implementers found new ways of exploiting these features to boost its
performance. However, would we still converge to this same design if we started afresh with today’s computer architectures and applications? To answer this question, we
gather and systematize a body of knowledge concerning polynomial hash design and implementation that is spread across research papers, cryptographic libraries, and
developers’ blogs. We develop a framework to automate the validation and benchmarking of the ideas that we collect. This approach leads us to five new candidate designs
for polynomial hash functions. Using our framework, we generate and evaluate different implementations and optimization strategies for each candidate. We obtain
substantial improvements over Poly1305 in terms of security and performance. Besides laying out the rationale behind our new designs, our paper serves as a reference for
efficiently implementing polynomial hash functions, including Poly1305.

Motivation: Improve Poly1305
For M = M1∥ · · · ∥Mn,

Poly1305(r,M) = (c1x
n + c2x

n−1 + · · · + cnx
1 mod 2130−5) mod 2128,

where ci = Mi∥1 and x = clamp(r, 22).

Key Points of Poly1305:

• Widely deployed, default choice in OpenSSH and WireGuard
• Good performance across all architectures without specific hardware support
• Clamping weakens security without adequate payback in performance
• Tailored for 32-bit architectures and waste limb space on 64-bit ones
• Limited security of Chacha20-Poly1305 in the multi-user setting due to Poly1305

Security Provided: ∆-Universality
Given a tag z ∈ T and two distinct messages M ̸= M ′ ∈M,

Prr←$R
[
Hr(M)−Hr(M

′) = z
]
≤ ϵ(M,M ′) .

Systematization of Knowledge (SoK)
Description of the Design Space for a Polynomial Hash

key R message M

∈ {0, 1}∗

r m1,m2, . . . ,mℓ ∈ F∗
p

M1 M2 · · · Mℓ

Pr(m1,m2, . . . ,mℓ) Polynomial

∈ Fpt

∈ {0, 1}∗
tag T

Our Exposition:

Design
Choices

Implementation
Choices

• Choice of Polynomial Construction:
– Classical Polynomial
– Polynomial Combinations

• Choice of Encodings:
– Field-to-Tag Encoding
– Key-to-Field Encoding
– Data-to-Field Encoding

• Choice of Finite Fields:
– Format of p: p = 2π−1 (Mersenne), p = 2π−θ (Cran-

dall), p = 2π+θ or p = 2m·d−
∑d−1

i=0 ci2
i·m (Solinas)

– Size of p

Modular Benchmarking Framework

Configuration Files

Configuration Parser

Arithmetic Generator

Encoding Polynomial Arithmetic

Hash Function Benchmark

C Compiler

Hash Function Library Benchmark Executable

Automated Testing Graph Generation

Auto-Generated Non Auto-Generated Partially Auto-Generated

Code of
Framework:

New Designs
Results:

• Our modular implementations
achieve high performance without
vectorization or hand-optimization

• Poly1163 performance makes it
suitable as drop-in replacement
for Poly1305

Our Expectations for Vectorization:

• Poly1163: Significantly outper-
forms Poly1305 at the same
security level

• Poly1503: Replacement for
Poly1305 with 34 bits of extra
security (103 → 137) at similar
performance

