
SoK: Efficient Design and Implementation of
Polynomial Hash Functions over Prime Fields

Jean Paul Degabriele Jan Gilcher Jérôme Govinden Kenneth G. Paterson

jeanpaul.degabriele@tii.ae, jerome.govinden@tu-darmstadt.de,
{jan.gilcher, kenny.paterson}@inf.ethz.ch

IEEE S&P 2024

DGGP (TII, ETHZ, TUDa) Efficient Design and Implementation of Polynomial Hash IEEE S&P 2024 1 / 16

Outline

1 Background

2 Systematization of Knowledge (SoK)

3 Systematic Benchmarking of Design and Implementations Choices

4 New Designs

DGGP (TII, ETHZ, TUDa) Efficient Design and Implementation of Polynomial Hash IEEE S&P 2024 2 / 16

∆-Universal Hash in Practice

Definition: Given z ∈ T and M ̸= M ′ ∈ M,

Prr←$R
[
Hr (M)− Hr (M

′) = z
]
≤ ϵ(M,M ′) .

Various practical applications:

▶ Data Structures: hash tables [CW79].

▶ Message Authentication Codes: UMAC, Badger, Poly1305-AES, GMAC [ISO/IEC 9797-3].

▶ AEAD: AES-GCM, ChaCha20-Poly1305 [RFC 8446].

DGGP (TII, ETHZ, TUDa) Efficient Design and Implementation of Polynomial Hash IEEE S&P 2024 3 / 16

The Adoption of ChaCha20-Poly1305 (ChaChaPoly)

-Poly1305 and ChaCha20 designed separately by Bernstein.2005,08

-First ChaChaPoly IETF draft, supported in and OpenSSH.2013

-ChaChaPoly specified for IETF protocols in [RFC 7539].2015

-ChaChaPoly proposed standard for TLS in [RFC 7905].
-Default choice in OpenSSH and .

2016

-Default choice in OTRv4 and the Bitcoin Lightning Network.2019

Key Points:

Good performance across all architectures without needing specific hardware support.

Alternative and backup AEAD scheme to AES-GCM.

Fast adoption even with the predominance of AES-GCM.

Conservative and simple design, focused on performance with standard AEAD security.

DGGP (TII, ETHZ, TUDa) Efficient Design and Implementation of Polynomial Hash IEEE S&P 2024 4 / 16

Poly1305 [Ber05]

For M = M1∥ · · · ∥Mn,

Poly1305(r ,M) = (c1x
n + c2x

n−1 + · · ·+ cnx
1 mod 2130−5) mod 2128,

where ci = Mi∥1 and x = clamp(r , 22).

Limitations:

Clamping introduced for fast implementations using FPUs (Floating-Point Units).
→ Almost all implementations of Poly1305 use integer ALUs (Arithmetic Logic Units).
→ Provides only ≈103 bits of security with a 128-bit key and tag.

Tailored for 32-bit architectures.

Limited security of ChaChaPoly in the multi-user setting due to Poly1305 [DGGP21].

DGGP (TII, ETHZ, TUDa) Efficient Design and Implementation of Polynomial Hash IEEE S&P 2024 5 / 16

Poly1305 [Ber05]

For M = M1∥ · · · ∥Mn,

Poly1305(r ,M) = (c1x
n + c2x

n−1 + · · ·+ cnx
1 mod 2130−5) mod 2128,

where ci = Mi∥1 and x = clamp(r , 22).

Given today’s advancements and applications,
would we still converge to this same design?

DGGP (TII, ETHZ, TUDa) Efficient Design and Implementation of Polynomial Hash IEEE S&P 2024 5 / 16

Systematization of Knowledge (SoK)

Current Standpoint:

Broad design space.

Multiple interactions between available choices.

Knowledge spreads across research papers, cryptographic libraries, and developers’ blogs.

Our Exposition [DGGP24]:

Design
Choices

Implementation
Choices

DGGP (TII, ETHZ, TUDa) Efficient Design and Implementation of Polynomial Hash IEEE S&P 2024 6 / 16

Brief Description of the Design Space
key R message M

∈ {0, 1}∗

r m1,m2, . . . ,mℓ ∈ F∗p

M1 M2 · · · Mℓ

Pr (m1,m2, . . . ,mℓ) Polynomial

m1 · r ℓ +m2 · r ℓ−1 + · · ·+mℓ · r Classical Polynomial

Horner Parallel Horner 2-level
Polynomial Evaluation

Strategy
∈ Fpt

∈ {0, 1}∗
tag T

DGGP (TII, ETHZ, TUDa) Efficient Design and Implementation of Polynomial Hash IEEE S&P 2024 7 / 16

Brief Description of the Design Space
key R message M

∈ {0, 1}∗

r m1,m2, . . . ,mℓ ∈ F∗p

M1 M2 · · · Mℓ

Pr (m1,m2, . . . ,mℓ) Polynomial

m1 · r ℓ +m2 · r ℓ−1 + · · ·+mℓ · r Classical Polynomial

Horner Parallel Horner 2-level
Polynomial Evaluation

Strategy

∈ Fpt

∈ {0, 1}∗
tag T

DGGP (TII, ETHZ, TUDa) Efficient Design and Implementation of Polynomial Hash IEEE S&P 2024 7 / 16

Brief Description of the Design Space
key R message M

∈ {0, 1}∗

r m1,m2, . . . ,mℓ ∈ F∗p

M1 M2 · · · Mℓ

Pr (m1,m2, . . . ,mℓ) Polynomial

m1 · r ℓ +m2 · r ℓ−1 + · · ·+mℓ · r Classical Polynomial

Horner Parallel Horner 2-level
Polynomial Evaluation

Strategy

∈ Fpt

∈ {0, 1}∗
tag T

DGGP (TII, ETHZ, TUDa) Efficient Design and Implementation of Polynomial Hash IEEE S&P 2024 7 / 16

Field Multiplication (Saturated Limb Representation)
m r× ∈ Fp

× Saturated Limb Representation

w = word size, e.g., 32/64 bitsw w w w w w

School Book
Multiplication

×

+

+

?

+

Saturated with Key-ClampingUnsaturated Limb Representation

DGGP (TII, ETHZ, TUDa) Efficient Design and Implementation of Polynomial Hash IEEE S&P 2024 8 / 16

Field Multiplication (Saturated Limb Representation with Key-Clamping)
m r× ∈ Fp

×

Saturated Limb Representation

w = word size, e.g., 32/64 bitsw w w w w w

School Book
Multiplication

×

+

+

?

+

Saturated with Key-Clamping

Unsaturated Limb Representation

Limitation: Not exploitable using parallel Horner and 2-level evaluation algorithms.
DGGP (TII, ETHZ, TUDa) Efficient Design and Implementation of Polynomial Hash IEEE S&P 2024 8 / 16

Field Multiplication (Unsaturated Limb Representation)
m r× ∈ Fp

×

Saturated Limb Representation

w = word size, e.g., 32/64 bitsw w w w w w

School Book
Multiplication

×

+

+

?

+

Saturated with Key-Clamping

Unsaturated Limb Representation

Exploitable using parallel Horner and 2-level evaluation algorithms.
DGGP (TII, ETHZ, TUDa) Efficient Design and Implementation of Polynomial Hash IEEE S&P 2024 8 / 16

Huge Design Space – What Now?

Problem:

How do we pick a concrete design from this huge space?

We want to be able to understand and test different combinations.

Different choices make sense for different hardware.

Solution:

Modularize!
▶ We use our systematization to define modular configurations.

Generic Implementations and Auto-Generation!
▶ Write generic implementations, setting specific parameters at compile time.
▶ However, fully generic code can lead to bad performance.
▶ Where this is likely to occur we automatically generate efficient implementations.

DGGP (TII, ETHZ, TUDa) Efficient Design and Implementation of Polynomial Hash IEEE S&P 2024 9 / 16

Modular Benchmarking Framework

Configuration Files

Configuration Parser

Arithmetic Generator

Encoding Polynomial Arithmetic

Hash Function Benchmark

C Compiler

Hash Function Library Benchmark Executable

Automated Testing Graph Generation

Auto-Generated Non Auto-Generated Partially Auto-Generated

DGGP (TII, ETHZ, TUDa) Efficient Design and Implementation of Polynomial Hash IEEE S&P 2024 10 / 16

Goals for New Designs

More efficient than Poly1305 (i.e., better runtime-security tradeoff).

Keep things simple, familiar to developers.

Allow various optimization strategies to tune implementations to different hardware.

But without tailoring the design towards a specific implementation.
▶ Don’t design for FPUs!

DGGP (TII, ETHZ, TUDa) Efficient Design and Implementation of Polynomial Hash IEEE S&P 2024 11 / 16

New Designs

No clamping to support FPU implementations as these are not worth the security loss.

Stick with Classical Polynomial over Fp. Pack limbs as full as we can.

Designs allow:
▶ Delayed reduction.
▶ 2-level polynomial evaluation.
▶ Exploiting CPU parallelism.

5 designs targeting 3 security-performance tradeoff levels.
▶ High Performance at Poly1305 Security.
▶ Higher Security at Poly1305 Performance.
▶ Very High Security.

DGGP (TII, ETHZ, TUDa) Efficient Design and Implementation of Polynomial Hash IEEE S&P 2024 12 / 16

New Designs

Design Target Prime Bits per limb Security Level Hash Function
(32-/64-bit)

High Performance at
Poly1305 Security

p1 = 2116 − 3 29/58 ≈107 bits Poly1163
p2 = 2122 − 3 25/61 ≈117 bits Poly1223

Higher Security at
Poly1305 Performance

p3 = 2150 − 3 30/50 ≈137 bits Poly1503
p4 = 2174 − 3 29/58 ≈161 bits Poly1743

Very High Security p5 = 2266 − 3 27/54 ≈245 bits Poly2663

DGGP (TII, ETHZ, TUDa) Efficient Design and Implementation of Polynomial Hash IEEE S&P 2024 13 / 16

Benchmarking

DGGP (TII, ETHZ, TUDa) Efficient Design and Implementation of Polynomial Hash IEEE S&P 2024 14 / 16

Benchmarking

*Turbo Boost/Core Adjusted

Results:

Our modular implementations achieve
high performance without
vectorization or hand-optimization.

Poly1163 performance makes it suitable
as drop-in replacement for Poly1305.

Our Expectations for Vectorization:

Poly1163: Significantly outperforms
Poly1305 at the same security level.

Poly1503: Replacement for Poly1305
with 34 bits of extra security
(103 → 137) at similar performance.

DGGP (TII, ETHZ, TUDa) Efficient Design and Implementation of Polynomial Hash IEEE S&P 2024 15 / 16

Where to Find More Details

SoK on Polynomial Hash:

https://doi.ieeecomputersociety.org/

10.1109/SP54263.2024.00132

Code of Polynomial Hash Framework:

https://github.com/jangilcher/polyno

mial_hashing_framework

DGGP (TII, ETHZ, TUDa) Efficient Design and Implementation of Polynomial Hash IEEE S&P 2024 16 / 16

https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00132
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00132
https://github.com/jangilcher/polynomial_hashing_framework
https://github.com/jangilcher/polynomial_hashing_framework

References I

Daniel J. Bernstein.

The poly1305-AES message-authentication code.

In Henri Gilbert and Helena Handschuh, editors, FSE 2005, volume 3557 of LNCS, pages 32–49. Springer,
Heidelberg, February 2005.

J Lawrence Carter and Mark N Wegman.

Universal classes of hash functions.

Journal of computer and system sciences, 18(2):143–154, 1979.

Jean Paul Degabriele, Jérôme Govinden, Felix Günther, and Kenneth G. Paterson.

The security of ChaCha20-Poly1305 in the multi-user setting.

In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 1981–2003. ACM Press, November 2021.

Jean Paul Degabriele, Jan Gilcher, Jérôme Govinden, and Kenneth G. Paterson.

Sok: Efficient design and implementation of polynomial hash functions over prime fields.

In 2024 IEEE Symposium on Security and Privacy (SP), pages 131–131, Los Alamitos, CA, USA, may
2024. IEEE Computer Society.

DGGP (TII, ETHZ, TUDa) Efficient Design and Implementation of Polynomial Hash IEEE S&P 2024 17 / 16

Benchmarks: Poly1163

DGGP (TII, ETHZ, TUDa) Efficient Design and Implementation of Polynomial Hash IEEE S&P 2024 18 / 16

Benchmarks: Poly1503

DGGP (TII, ETHZ, TUDa) Efficient Design and Implementation of Polynomial Hash IEEE S&P 2024 19 / 16

	Appendix

