What's Wrong with Poly13057

Improving Poly1305 through a Systematic Exploration of
Design Aspects of Polynomial Hash Functions

Jean Paul Degabriele Jan Gilcher Jérome Govinden Kenneth G. Paterson

RWC 2024

TECHNISCHE
UNIVERSITAT
DARMSTADT

Technology LK "
TH) o ETH:zurich

DGGP (TII, ETHZ, TUDa)

What's Wrong with Poly1305? RWC 2024 1/15

Outline

© Background

© Systematization of Knowledge (SoK)

© Systematic Benchmarking of Design and Implementations Choices

© New Designs

DGGP (TIl, ETHZ, TUDa) What's Wrong with Poly1305?

A-Universal Hash in Practice

o Definition: Given z€ T and M # M' € M,

Prsr [H (M) — H(M') = 2] < e(M, M').

e Various practical applications:

» Data Structures: hash tables [CW79].
» Message Authentication Codes: UMAC, Badger, Poly1305-AES, GMAC [ISO/IEC 9797-3].
» AEAD: AES-GCM, ChaCha20-Poly1305 [RFC 8446].

DGGP (TII, ETHZ, TUDa) What's Wrong with Poly13057 RWC 2024 3/15

The Adoption of ChaCha20-Poly1305 (ChaChaPoly)

2005,08—l -Poly1305 and ChaCha20 designed separately by Bernstein.

2013-e -First ChaChaPoly IETF draft, supported in @ chrome and 4 OpenSSH.

2015-e -ChaChaPoly specified for IETF protocols in [RFC 7539].

2016

-ChaChaPoly proposed standard for TLS in [RFC 7905].
-Default choice in 4 OpenSSH and €) WIREGUARD.

2019-e -Default choice in OTRv4 and the Bitcoin Lightning Network.

DGGP (TIl, ETHZ, TUDa) What's Wrong with Poly1305? RWC 2024 4/15

The Adoption of ChaCha20-Poly1305 (ChaChaPoly)

2005,08 -» -Poly1305 and ChaCha20 designed separately by Bernstein.
2013 - -First ChaChaPoly IETF draft, supported in 6 chrome and 4 OpenSSH.

2015 -e -ChaChaPoly specified for IETF protocols in [RFC 7539].

-ChaChaPoly proposed standard for TLS in [RFC 7905].

2016 -Default choice in 4 OpenSSH and &) WIREGUARD.

2019 - -Default choice in OTRv4 and the Bitcoin Lightning Network.

Key Points:
@ Good performance across all architectures without needing specific hardware support.
@ Alternative and backup AEAD scheme to AES-GCM.
@ Fast adoption even with the predominance of AES-GCM.
@ Conservative and simple design, focused on performance with standard AEAD security.

DGGP (TIl, ETHZ, TUDa) What's Wrong with Poly1305? RWC 2024 4/15

Poly1305 [Ber05]

For M = M| - - - || M,
Poly1305(r, M) = (c1x" + cox" * 4+ -+ + cox! mod 2139-5) mod 2!28,

where ¢; = M;j||1 and x = clamp(r, 22).

Limitations:

e Clamping introduced for fast implementations using FPUs (Floating-Point Units).
— Almost all implementations of Poly1305 use integer ALUs (Arithmetic Logic Units).
— Provides only =103 bits of security with a 128-bit key and tag.

@ Tailored for 32-bit architectures.

o Limited security of ChaChaPoly in the multi-user setting due to Poly1305 [DGGP21].

DGGP (TIl, ETHZ, TUDa) What's Wrong with Poly1305? RWC 2024 5/15

Poly1305 [Ber05]
For M = My - - ||Mp,

Poly1305(r, M) = (c1x™ 4+ cox" "1 4 - + coxt mod 2130—5) mod 2128,

where ¢; = M;||1 and x = clamp(r, 22).

Given today’s advancements and applications,
would we still converge to this same design?

DGGP (TIl, ETHZ, TUDa) What's Wrong with Poly1305?7 RWC 2024 5/15

Systematization of Knowledge (SoK)

Current Standpoint:
@ Broad design space.
@ Multiple interactions between available choices.

@ Knowledge spreads across research papers, cryptographic libraries, and developers’ blogs.

Our Exposition [DGGP24]:

Design
Choices

Implementation
Choices

DGGP (TIl, ETHZ, TUDa) What's Wrong with Poly1305?7 RWC 2024 6/15

Brief Description of the Design Space
key R message M

M [[M] {0y
| | l

r my,ma,...,My G]F;

T

P.(my, ma, ..., my) Polynomial

DGGP (TIl, ETHZ, TUDa) What's Wrong with Poly1305?7

Brief Description of the Design Space
key R message M

] (M m | [&

|

r my, mp,...,My

\

m1-re—i—m2-r£’1+---—i—mg-r

T

Horner Parallel Horner 2-level

DGGP (TIl, ETHZ, TUDa) What's Wrong with Poly1305?7

€ {0,1}*

l

%
ek,

Classical Polynomial

Polynomial Evaluation
Strategy

RWC 2024 7/15

Brief Description of the Design Space

key R

I e N

r

|
\

DGGP (TII, ETHZ, TUDa)

message M
M, | M
my, my, ..., my
P.(my, ma, ..., my)

t

L1

tag T

What's Wrong with Poly1305?7

Polynomial

€F,

|

e {0,1}*

RWC 2024 7/15

Field Multiplication (Saturated Limb Representation)

m X r e,
|] x [[T Setwrated Limb Representation
w w w w w w w = word size, e.g., 32/64 bits

School Book
Multiplication

DGGP (TII, ETHZ, TUDa) What's Wrong with Poly13057 RWC 2024 8/15

Field Multiplication (Saturated Limb Representation with Key-Clamping)

m X r e,
‘ :fff] X ‘ El Ifffffffl [fffffff‘ Saturated with Key-Clamping
w w w w w w w = word size, e.g., 32/64 bits

School Book
Multiplication

Limitation: Not exploitable using parallel Horner and 2-level evaluation algorithms.
DGGP (TIl, ETHZ, TUDa) What's Wrong with Poly1305? RWC 2024 8/15

Field Multiplication (Unsaturated Limb Representation)

m X r elF,
[T T T x [0 0T [0 Unsaturated Limb Representation
w w w w w w w = word size, e.g., 32/64 bits
School Book | =
Multiplication ‘ l:::::‘ ‘ i::::

Exploitable using parallel Horner and 2-level evaluation algorithms.
DGGP (TIl, ETHZ, TUDa) What's Wrong with Poly1305? RWC 2024 8/15

Huge Design Space — What Now?

Problem:

@ How do we pick a concrete design from this huge space?
@ We want to be able to understand and test different combinations.
@ Different choices make sense for different hardware.

Solution:
o Modularize!
» We use our systematization to define modular configurations.

@ Generic Implementations and Auto-Generation!

» Write generic implementations, setting specific parameters at compile time.
» However, fully generic code can lead to bad performance.
> Where this is likely to occur we automatically generate efficient implementations.

DGGP (TIl, ETHZ, TUDa) What's Wrong with Poly1305? RWC 2024 9/15

Modular Benchmarking Framework

g

Configuration Files

Configuration Parser ‘

I

RS R R >{ Arithmetic Generator ‘

J,—‘

Encoding % Polynomial # Arithmetic

HasL; Function ’D Benchmark ‘
1 1
‘ C Compiler ‘
1 1
‘ Hash Function Library ‘ ‘ Benchmark Executable ‘
1 1
‘ Automated Testing ‘ ‘ Graph Generation ‘

[Auto-Generated [Non Auto-Generated [Partially Auto-Generated

DGGP (TIl, ETHZ, TUDa) RWC 2024 10/15

So, What is Wrong with Poly13057

@ Choice of prime is not ideal for 64-bit implementations.
» Requires a unbalanced representation.

» This requires 2 additional bits for the modular reduction, wasting 3% of limb space.

@ There is a lot of unused space in the limbs, wasting cycles.

» 32-bit: 26-bit limbs leave 12% of the limbs unused.
> 64-bit: Mixed 44-/42-bit limbs leave up to 23% of the limbs unused.

o Clamping sacrifices 22 bits of security to enable FPU implementations.

» Also wastes space in the key limbs (17%).
» Sensible at the time. Now, not so much.

openss| poly1305-x86.pl

[Blesides SSE2 there are floating-point and AVX options; FP is deemed un-
necessary, because pre-SSE2 processor are too old to care about, while it's
not the fastest option on SSE2-capable ones;

DGGP (TIl, ETHZ, TUDa) What's Wrong with Poly13057 RWC 2024

11/15

Goals for New Designs
@ More efficient than Poly1305 (i.e., better runtime-security tradeoff).
o Keep things simple, familiar to developers.

@ Allow various optimization strategies to tune implementations to different hardware.

@ But without tailoring the design towards a specific implementation.
» Don't design for FPUs!

DGGP (TIl, ETHZ, TUDa) What's Wrong with Poly1305? RWC 2024 12/15

New Designs

@ No clamping to support FPU implementations as these are not worth the security loss.

@ Stick with Classical Polynomial over F,. Pack limbs as full as we can.

@ Designs allow: Delayed reduction, 2-level polynomial evaluation, exploiting CPU

parallelism.

. Fewer limbs to Same number of limbs and
Options: . . .

increase performance increase security

Prime for fast reduction: p; = 2116 — 3 pp =210 _3
Bits per limb (32/64): 29/58 30/50
Security Level: ~107 bits ~137 bits
Resulting Hash function: Poly1163 Poly1503

DGGP (TIl, ETHZ, TUDa) What's Wrong with Poly1305? RWC 2024

13/15

Benchmarking

A OpenSSL Poly1305 #8666 Poly1503

RN Poly1163 N Poly1305
Arm Cortex-A76
Intel Core i7-940
Intel Core i7-4790K
Intel Core i7-8565U
Intel Xeon Gold 6258R"
Amd Epyc 7742"

0.0 0.5 1.0 15 2.0

Cycles/Byte

*Turbo Boost/Core Adjusted

DGGP (TII, ETHZ, TUDa)

What's Wrong with Poly1305?

Results:

@ Our modular implementations achieve
high performance without
vectorization or hand-optimization.

@ Poly1163 performance makes it suitable
as drop-in replacement for Poly1305.

Our Expectations for Vectorization:
@ Poly1163: Significantly outperforms
Poly1305 at the same security level.

@ Poly1503: Replacement for Poly1305
with 34 bits of extra security
(103 — 137) at similar performance.

RWC 2024 14 /15

Where to Find More Details

SoK on Polynomial Hash: Code of Polynomial Hash Framework:

https://doi.ieeecomputersociety.org/ https://github.com/jangilcher/polyno
10.1109/8P54263.2024.00132 mial_hashing framework

DGGP (TIl, ETHZ, TUDa) RWC 2024 15/15

https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00132
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00132
https://github.com/jangilcher/polynomial_hashing_framework
https://github.com/jangilcher/polynomial_hashing_framework

References |

Daniel J. Bernstein.
The poly1305-AES message-authentication code.

In Henri Gilbert and Helena Handschuh, editors, FSE 2005, volume 3557 of LNCS, pages 32—49. Springer,
Heidelberg, February 2005.

J Lawrence Carter and Mark N Wegman.
Universal classes of hash functions.
Journal of computer and system sciences, 18(2):143-154, 1979.

Jean Paul Degabriele, Jérome Govinden, Felix Glinther, and Kenneth G. Paterson.
The security of ChaCha20-Poly1305 in the multi-user setting.
In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 1981-2003. ACM Press, November 2021.

Jean Paul Degabriele, Jan Gilcher, Jérome Govinden, and Kenneth G. Paterson.
Sok: Efficient design and implementation of polynomial hash functions over prime fields.

In 2024 IEEE Symposium on Security and Privacy (SP), pages 131-131, Los Alamitos, CA, USA, may
2024. IEEE Computer Society.

DGGP (TII, ETHZ, TUDa) What's Wrong with Poly13057

Benchmarks: Poly1163

Poly1163 Performance on different CPUs

5
4
3
o
£
] |
o
2
1
0
2 4 6 8 10 12 14 16
Message Length in KB
—— Amd Epyc 7742 (Turbo Core corrected) —— Intel Core i7-8565U —— Intel Core 2 Duo T5800
—— Intel Core Xeon Gold 6258R (Turbo Boost corrected) —— Intel Core i7-940 Arm Cortex-A76

— Intel Core i7-4790K

DGGP (TIl, ETHZ, TUDa)

Benchmarks: Poly1503

Poly1503 Performance on different CPUs

Cycles/byte

h 2 4 6 8 10
Message Length in KB
—— Amd Epyc 7742 (Turbo Core corrected) —— Intel Core i7-8565U
—— Intel Core Xeon Gold 6258R (Turbo Boost corrected) —— Intel Core i7-940

— Intel Core i7-4790K

DGGP (TIl, ETHZ, TUDa)

12 14

—— Intel Core 2 Duo T5800
Arm Cortex-A76

